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Spontaneous film rupture from van der Waals instability is investigated in two
dimensions. The focus is on pure liquids with clean interfaces. This case is applicable
to metallic foams for which surfactants are not available. There are important
implications in aqueous foams as well, but the main differences are noted. A thin
liquid film between adjacent bubbles in a foam has finite length, curved boundaries
(Plateau borders) and a drainage flow from capillary suction that causes it to thin.
A full linear stability analysis of this thinning film shows that rupture occurs once
the film has thinned to ‘tens’ of nanometres, whereas for a quiescent film with a
constant and uniform thickness, rupture occurs when the thickness is ‘hundreds’ of
nanometres. Plateau borders and flow are both found to contribute to the stabilization.
The drainage flow leads to several distinct qualitative features as well. In particular,
unstable disturbances are advected by the flow to the edges of the thin film. As a
result, the edges of the film close to the Plateau borders appear more susceptible to
rupture than the centre of the film.
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1. Introduction
In a foam, the gas phase is partitioned by a continuous liquid phase. We are

interested in foams with a liquid fraction less than 10 %, such that the bubbles crowd
each other. If a cross-section were taken of the foam, the bubbles would appear
polygonal due to the close packing, with thin liquid bridges called ‘lamellae’ forming
the edges of the polygons and ‘Plateau borders’ of nearly uniform curvature forming
the corners. This is not an equilibrium configuration, as the foam will seek to lower its
surface energy through coarsening. One mode of coarsening occurs from the diffusion
of gas across lamellae, causing large bubbles to grow at the expense of smaller
neighbouring bubbles. The other mode of coarsening occurs from the coalescence of
adjacent bubbles, which results in abrupt changes in the total surface area of foam.
The latter mode is dictated by two processes that are the focus of this paper: the
thinning and breaking of the lamellae.
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Since the Plateau borders are curved, surface tension causes a suction pressure
which drains fluid from the lamellae, causing them to thin. The rate of thinning
for a lamella composed of a pure liquid was obtained by Breward & Howell (2002)
and Brush & Davis (2005), with the lamellar thickness decreasing as hL ∼ t−2 for
large times t . After sufficient thinning has occurred (hL ≈ 10–100 nm), long-range
intermolecular forces due to van der Waals attractions become important and can
lead to the spontaneous rupture of the film (Sheludko 1962, 1967). The change
in thermodynamic properties (e.g. chemical potential) as a bulk phase becomes
ultrathin in at least one of its dimensions is manifested in a ‘disjoining pressure’
φ (Derjaguin 1955). Using methods from quantum field theory, Lifshitz and his
coworkers constructed a general macroscopic theory of van der Waals attractions
for inhomogeneous medium calculable from the knowledge of its absorption spectra
(Lifshitz 1956; Dzyaloshinskii & Pitaevskii 1959; Dzyaloshinskii, Lifshitz & Pitaevskii
1960). We are concerned with disjoining pressures φ ∼ h−3

L , which arise from ‘non-
retarded’ van der Waals attractions. The strongly divergent nature of these attractive
forces as the film thickness tends to zero results in rapid acceleration towards
rupture shortly after the onset of instability (Williams & Davis 1982; Erneux
& Davis 1993); the evolution is locally self-similar near the rupture singularity
(Ida & Miksis 1996; Vaynblat, Lister & Witelski 2001). Accurate predictions for the
rate of coarsening in foam, as well as its lifetime, require proper characterization
of the rupture conditions, where the film first becomes unstable to infinitesimal
disturbances.

The lifetime of aqueous foams can be significantly prolonged with the addition
of surfactant. On the one hand, a non-uniform distribution of surfactant along the
interfaces results in Marangoni stresses which oppose drainage and slow thinning
(this is described in detail by Breward & Howell 2002); if the gas–liquid interfaces
become completely loaded with surfactant they are rendered immobile. On the other
hand, electric double layers form along the interfaces of aqueous surfactant solutions,
leading to repulsive forces which can counter the attractive van der Waals forces
to prevent rupture (for non-ionic detergents, steric repulsion may be involved). The
interplay between short-ranged repulsion and long-ranged attraction in ultrathin
films is elaborated by Derjaguin–Landau–Verwey–Overbeek theory (Derjaguin &
Landau 1941; Verwey & Overbeek 1948) and is responsible for the formation of
metastable ‘black films’ (Overbeek 1960). We are interested in pure liquids with clean
interfaces. Apart from their fundamental importance, this has applications to the
coarsening of metallic foams, for which no surfactants are available. Metallic foams
are inexpensive precursors to porous solids that are used in applications where
weight considerations are important (for example, see Banhart 2001).

Vrij (1966) examined the spontaneous rupture of a free film with constant uniform
thickness and infinite lateral extent using a static stability analysis. By expanding the
fluctuations at the surfaces of the film in Fourier modes, Vrij’s analysis formalized
an earlier approach taken by Sheludko (1962). Such films are unstable to long waves
that have wavelengths exceeding a critical value

λc =

(
4π3σ

A′

)1/2

h2
0, (1.1)

where h0 is the film thickness, σ is the surface tension and A′ is the Hamaker constant.
According to this result, an unbounded film is always unstable. For a film of finite
extent, a critical thickness for instability can be estimated from (1.1) by equating λc
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to the length of the film. This basic result has been expanded to include the effects of
surface active agents (Ivanov et al. 1970; Vrij et al. 1970; Ruckenstein & Jain 1974)
as well as to liquid layers on a solid substrate (Ruckenstein & Jain 1974; Williams &
Davis 1982).

While these results are instructive, they predict critical rupture thicknesses which
are larger than what is measured experimentally (see Coons et al. 2003). There are
several possible sources for this discrepancy. For example, films with finite length
typically have curved boundaries and a drainage flow that causes thinning. This is
certainly true for foam lamellae due to the presence of Plateau borders. In order to
rigorously analyse the stability problem, one must confront a time-dependent and
spatially non-uniform basic state. Gumerman & Homsy (1975) treated the linear
stability of radially bounded thinning free films with tangentially immobile interfaces
and a two-dimensional drainage flow computed from Reynolds’ lubrication theory.
A quasi-static (frozen-time) approximation was used to examine the instantaneous
stability as the film thins. The critical thicknesses they obtained were smaller than
those inferred from (1.1) and this stabilization was attributed to the drainage flow
and finite film length. Sharma & Ruckenstein (1987) stressed that long-wavelength
perturbations are particularly stabilized by the flow and argue that this leads to
rupture modes with shorter wavelengths (about one-tenth of the film length). These
results have spurred a number of related studies for draining films with tangentially
immobile interfaces as reviewed by Coons et al. (2003). Here, we extend these results
to the case of completely mobile interfaces.

A complete stability analysis for a film with finite length requires a prescription
of the boundary conditions at the edges of the film. The analyses cited above have
imposed these conditions artificially. However, given the long-wave nature of the
van der Waals instability, one could expect the choice of boundary conditions to
influence the predictions for rupture. To address this, we analyse the linear stability of
a lamella coupled to its adjoining Plateau borders. Following the matched asymptotic
analysis used by Brush & Davis (2005) (hereafter BD) to examine lamellar thinning
of free films, we obtain two-dimensional composite solutions for the leading-order
interfacial profile and fluid velocity and pressure fields. These approximate solutions
are uniformly valid over a region of the fluid spanned by a lamella and its adjacent
Plateau borders and serve as the basic state in the linear stability analysis. By
systematically including the Plateau borders in this way, we present a physically
correct method for imposing the conditions at the edges of the film. After formulating
the problem in § 2.1, we review the matched asymptotic analysis of BD and construct
the composite solutions in § 2.2.

The details of the linear stability analysis are given in § 3. We employ a frozen-time
approximation to examine the instantaneous characteristics of the instability as the
lamella thins. This approximation is commonly made when analysing the stability of
time-dependent basic states, and its correct use requires that the evolution of the base
state be slow relative to the growth and decay of the disturbances (Davis 1976). These
conditions are not well met in the vicinity of marginal stability (Shen 1961), precisely
where the critical thickness is obtained. To improve the frozen-time approximation
we introduce an effective growth rate which depends on the rate of thinning. The
growth rates and corresponding eigenfunctions are obtained through a numerical
solution of the characteristic equations. Our approach uses an elliptic grid generation
technique (Thompson, Warsi & Mastin 1985) which maps the physical domain into
a rectangular computational domain, thus facilitating a discretization of the linear
differential operator by finite differences.



66 A. M. Anderson, L. N. Brush and S. H. Davis

Gas

(a) (b)

Liquid

Plateau
borders

Lamellae
2hL

2Θ 2Θ

2L
a

Figure 1. Two-dimensional periodic foam geometries with (a) square and (b) hexagonal
symmetry. The hexagonal array satisfies Plateau’s law, since three lamellae meet at the Plateau
border.

Before presenting the results of these calculations, the stabilities of two idealized
basic states are examined in § 4 to establish benchmarks for film rupture. Both
benchmarks are for films of finite length and uniform thickness, but without Plateau
borders. In the first benchmark, the film has a constant thickness, and in the second,
the film is thinning in response to a drainage flow at a rate established by Plateau
border suction. These two cases complement existing results for films with tangentially
immobile interfaces mentioned above. The solutions from the full stability calculation
are given in § 5, where we identify several new qualitative features of the instability
and present the predictions for the critical thicknesses which are compared against
the benchmarks. The results are chosen to illustrate the dependence of the critical
lamellar thickness on Hamaker constant, surface tension, lamellar length and Plateau
border radius of curvature. We conclude with a discussion in § 6.

2. Problem specification and basic state
We consider drainage and rupture occurring in two-dimensional lamellae. The

same processes are also present in three-dimensional foams; however, the geometry
is considerably more complex. Herein, we adopt the approach used by BD, who
have analysed lamellar thinning by modelling the foam as a two-dimensional periodic
array of bubbles, as shown in figure 1. The geometry is then characterized by four
parameters: lamellar thickness 2hL, lamellar length 2L, Plateau border radius of
curvature a and angle Θ (Θ = π/4 for a square array and Θ = π/6 for a hexagonal
array). Note that a hexagonal array has three lamellae joined at a Plateau border,
in compliance with Plateau’s law (Plateau 1873). The angle Θ does not play an
important role in rupture, however, so we assume throughout that the foam has
square symmetry.

The effects of gravity will be excluded because of the small volume fraction of
liquid. This assumption was justified in the context of lamellar drainage (Breward &
Howell 2002; Brush & Davis 2005) and earlier studies of film rupture have shown that
gravity plays a non-essential role (Lucassen et al. 1970; Gumerman & Homsy 1975).
With these specifications, it is sufficient to focus our efforts on a single lamella and its
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Figure 2. A lamella with adjoining Plateau borders. Shaded regions correspond to liquid
and dashed lines are lines of symmetry which correspond to the dashed lines in figure 1.

adjoining Plateau borders, as shown in figure 2, where the dashed boundaries indicate
lines of symmetry which coincide with the dashed boundaries of the triangular regions
in figure 1. In the remainder of this section, we first formulate the free-boundary
problem in the lamella and Plateau borders and then review previous work (Brush &
Davis 2005) on lamellar thinning that defines a basic state for the subsequent linear
stability analysis.

2.1. Formulation

We model the liquid phase as an incompressible Newtonian fluid with dynamic
viscosity µ and density ρ, and the gas phase as a passive (quiescent) fluid of uniform
pressure pg . Non-dimensional variables are introduced by using the following scales:
length L0, time L0/U0, velocity U0 and pressure µU0/L0, where 2L0 is the initial
length of the lamella and U0 is a velocity scale which characterizes lamellar drainage
and will be defined later. Since the effects of inertia are not important in lamellar
thinning (Brush & Davis 2005) nor at the onset of rupture (Ruckenstein & Jain
1974; Erneux & Davis 1993), we do not include them here. They must be included as
the rupture processes develop beyond the linearized stability limit (Erneux & Davis
1993; Vaynblat et al. 2001). The equations for momentum and mass conservation are
therefore given by the modified Stokes equations

∇ (p + φ) = ∇2v, (2.1)

∇ · v = 0, (2.2)

where v = (u, w) is the fluid velocity with components u and w defined as in figure 2. In
addition to the hydrodynamic pressure p, attractive van der Waals forces give rise to a
disjoining pressure φ as the lamella approaches thicknesses at the submicrometre scale
(10–100 nm). We consider only non-retarded van der Waals attractions modelled by

φ(h) =
A

(2h)3
, (2.3)

which is a function of the total thickness of the liquid layer 2h and scaled by
A= A′/6πµU0L

2
0 > 0, the non-dimensional Hamaker constant. The estimate A′ ≈ 10−12

to 10−14 erg provides a typical energy scale for the (dimensional) Hamaker constant
(Parsegian 2006).

The gas–liquid interface, located at z =h(x, t), is modelled as a deformable boundary
endowed with a constant surface tension σ . Here, the following kinematic condition
is enforced:

w = ht + uhx, (2.4)
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along with normal and tangential stress balances

p − n ·
[
∇v + (∇v)T

]
· n = C−1K(h), (2.5)

t ·
[
∇v + (∇v)T

]
· n = 0, (2.6)

where C = µU0/σ is the capillary number, n =(−hx, 1)/
√

1 + h2
x is the unit

normal pointing into the gas phase, t = (1, hx)/
√

1 + h2
x is the unit tangent and

K(h) = −hxx/(1 + h2
x)

3/2 is twice the mean curvature. Note that, according to (2.5), p

gives the non-dimensional pressure difference between the gas and liquid phases. To
fully specify the problem, symmetry conditions are enforced at the remaining (dashed)
boundaries. For instance, at the centreline z = 0, we require that uz = w =pz = 0.

2.2. Basic state for lamellar thinning

Using the problem formulation above, BD presented an analysis of lamellar thinning
resulting from Plateau border suction and the findings are now reviewed to arrive at
a basic state. The solution procedure follows a matched asymptotic analysis originally
due to Bretherton (1961). In the limit of small capillary number (C � 1) there are
three distinct scaling regions: the ‘Plateau border regions’ are capillary-static wherein
the gas–liquid interface minimizes surface area, forming circular arcs of radius a;
the ‘lamellar region’ is a viscous-dominated thin-film region which thins uniformly in
response to a squeeze flow; and the ‘transition regions’ are narrow regions connecting
the lamella and Plateau borders, in which both viscosity and capillarity are balanced.
Leading-order solutions have been obtained in each region and we are interested in
composite solutions for h, p, u and w which are uniformly valid over the entire region
shown in figure 2.

Let h0 and a0 be the non-dimensional lamellar thickness and Plateau border radius,
respectively, at time t =0. Recall that all lengths are scaled by the lamellar length, so
that h0 � 1 measures the initial aspect ratio of the lamella. The asymptotic analysis
outlined above yields an appropriate velocity scale for drainage U0 = (σ/µ)

√
h0/a0,

which is consistent with our original assumption C � 1 provided that h0 � a0. With
this velocity scale, the time scale for thinning is determined and the lamellar thickness
hL evolves according to the following ordinary differential equation:

dhL

dt
= −Q

L
, Q =

3

8

(
2a0h

3
L

h0a

)1/2

, hL(0) = h0, (2.7)

where Q is the drainage volume flow rate. The length L and radius a are determined
for two distinguished geometric limits characterized by size of a0 relative to h0:

a0 = O(1) : L = 1, a = a0 (semi-arid limit), (2.8)

a0 = O(
√

h0) : L = 1, a =

[
a2

0 +
2L(h0 − hL)

tan Θ − Θ

]1/2

(arid limit). (2.9)

BD show that drainage is initially slow in the arid limit since the Plateau borders
must expand to accept fluid from the lamella. Ultimately, both limits exhibit the same
long-time behaviour: hL/h0 ∼ t−2 and a/a0 ∼ 1. This is the regime where we perform
the stability analysis.

A uniformly valid composite solution ψc is constructed in the standard way:

ψc = ψL + ψT + ψPB − ψL-T − ψT -PB,

where ψL, ψT and ψPB are the solutions in the lamella, transition and Plateau border
regions, respectively, and ψL-T and ψT-PB are the common parts which arise from
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Figure 3. Composite solutions at a fixed time. These give an approximate basic state for the
linear stability analysis.

matching ψL to ψT and ψT to ψPB , respectively. The interfacial profile is given by

hc =

⎧⎪⎪⎨
⎪⎪⎩

hLη, |x| � 1,

hLη +
[
a −

√
a2 − (|x| − 1)2

]
− (|x| − 1)2

2a
, |x| > 1,

(2.10)

and the field variables are given by

uc =
Q

hL

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−η−1, x < −1,

x + 1 − η−1, −1 � x < 0,

x − 1 + η−1, 0 � x � 1,

η−1, x > 1,

(2.11)

wc =
3

4a

√
a0

h0

(
η−3/2 − η−3

)
z, (2.12)

pc =
1

2a

√
a0

h0

(
η−3/2 + η−3 − 2

)
, (2.13)

where h = hLη is the film profile in the transition region, with η implicitly given by

2
√

η +
1

3
ln

(
η − 2

√
η + 1

η +
√

η + 1

)
− 2√

3
arctan

(
2
√

η + 1√
3

)
=

√
2

hLa
(|x| − 1). (2.14)

The solutions (2.10)–(2.13) are plotted in figure 3 at a fixed time.
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The composite film profile given by (2.10) leads to a flat lamella region and rounded
Plateau borders, with a smooth monotonic transition in the intermediate region. The
pressure is constant in both the lamella and Plateau borders, and the entire pressure
drop between these regions is taken up in the transition region. This suction drives
a uniform plug flow in the lamella, with the fluid moving into the Plateau borders
where it comes to rest. Note that the transverse component of the fluid velocity only
becomes appreciable in the transition region. This is required by continuity, since the
film thickens as fluid enters the Plateau borders.

Finally, we point out that van der Waals attractions are a higher order effect in this
basic state; Plateau border suction is the dominant effect which leads to thinning. If
van der Waals attractions were strong enough to be included, lamellar drainage would
be enhanced and thinning accelerated due to the additional conjoining pressure φ

in the thin film. This assumption requires that A= O(h3
L) for all lamella thicknesses

of interest. Whether or not this is true for physically relevant values of A therefore
requires knowledge of the critical thickness at the onset of rupture. We return to this
point in § 6 after we have presented the results of the linear stability analysis.

3. Linear stability analysis
In this section, we give the details for the linear stability analysis of the approximate

basic state ψ̄ ≈ ψc ≡ {hc, uc, wc, pc} given by (2.10)–(2.13). This base state is a time-
dependent flowing and spatially non-uniform state characterized concisely at any
instant in time by the geometric quantities hL and a which evolve according to (2.7)
and (2.8) in the semi-arid limit and (2.7) and (2.9) in the arid limit. For the purposes of
studying film rupture, only the long-time (self-similar) behaviour of these quantities is
of interest, where film thicknesses approach the submicrometre scale and the Plateau
border radius of curvature approaches a constant value. The distinction between
semi-arid and arid foams is not necessary in the linear stability analysis, though it is
important that a distinction be made when discussing the time to rupture.

Consider now the infinitesimal perturbations to the basic state ψ̂ = ψ − ψ̄ . Such
disturbances occur naturally due to the presence of spontaneous thermal fluctuations
at the surfaces of the thin liquid films (Vrij & Overbeek 1968). The linearization of
the governing equations and boundary conditions (2.1)–(2.6) with respect to these
perturbations leads to a linear stability problem of the form

Bψ̂t = L(x, z, t; parameters)ψ̂, (3.1)

where L is a linear differential operator and the operator B is simply used to
indicate that the left-hand side is present for the linearized kinematic condition, but
is otherwise zero. Formally, (3.1) is derived by linearizing about an exact solution ψ̄

and using the composite solutions ψc to approximate the coefficients of the operator
L. The explicit form of the linear stability equations are given in the Appendix along
with the details of the linearization. These equations are written in general curvilinear
coordinates to facilitate a numerical solution which is described in further detail
below.

In principle, film rupture could be analysed by prescribing initial conditions with
(3.1) and integrating the full initial-value problem. An alternative and more instructive
approach is to examine the characteristics of the instability. This is facilitated by a
‘frozen-time’ approximation, whereby the basic state is assumed to evolve slowly
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relative to the growth of the perturbations, thus permitting solutions of the form

ψ̂ = Ψ (x, z, t∗)eσ (t∗)t , (3.2)

where the basic state is evaluated at the time t∗, but t∗ is regarded as a parameter
(Davis 1976). Introducing this ansatz into (3.1) leads to the differential eigenvalue
problem

σ (t∗)BΨ = L(x, z, t∗; parameters)Ψ, (3.3)

for the instantaneous growth rate σ (t∗) and eigenfunctions Ψ (x, z, t∗). The
independent parameters of (3.3) are hL(t∗), a and A. To quantify the strength of
van der Waals attractions we use the Sheludko number,

S ≡ AC =
A′

6πσL2
0

, (3.4)

in place of A because of its central importance in studies of film rupture (Sheludko
1962).

The frozen-time approximation has been frequently used in earlier analyses of
rupture for thinning films (Vrij 1966; Vrij & Overbeek 1968; Ivanov et al. 1970;
Ruckenstein & Jain 1974; Gumerman & Homsy 1975); however, the underlying
assumptions must break down in the vicinity of marginal stability where the principle
modes for rupture are slowly growing or decaying (Shen 1961). The time dependence
of the basic state must be accounted for when predicting the onset of rupture. For
this purpose, we define an ‘effective growth rate’ for perturbations

σE(t∗) ≡ d

dt

[
ln(ĥ) + ln(hL)

]
t=t∗

= σ (t∗) − Q(t∗)

hL(t∗)
, (3.5)

which modifies the growth rate for perturbations computed with the frozen-time
approximation by the rate of lamellar thinning, with the drainage rate Q given by
(2.7). The growth of perturbations is effectively delayed as the film continues to thin
in the vicinity of marginal stability. This definition follows from a related study by
Burelbach, Bankoff & Davis (1988) who examined the van der Waals instability of
films thinning due to evaporation. There, the fully time-dependent linear stability
problem was analysed, and the effective growth rate (3.5) was found to properly
characterize the marginal stability.

The spatially non-uniform basic state renders a linear operator L with variable
coefficients and so we pursue a numerical solution of (3.3). Our strategy is to
map the linearized physical domain into a rectangular computational domain to
facilitate a discretization of the linear operator using finite-difference methods and
the conversion of (3.3) into a matrix eigenvalue problem. For this reason, we express
the linear stability equations in a boundary-fitted curvilinear coordinate system in the
Appendix. The coordinate mapping is obtained numerically using an elliptic
grid generation technique capable of producing a high-quality nearly orthogonal
computational grid (Thompson et al. 1985). A sample grid is shown in figure 4.

Centred differences are used at the interior grid points and one-sided differences
are used at the boundaries to discretize (A 1)–(A 8) as well as to compute the
metric quantities that appear as coefficients in these equations. Discretization
produces a generalized eigenvalue problem AΨ = σ BΨ , where A is the matrix which
approximates the operator L, B is a matrix corresponding to the operator B and Ψ

is the vector of unknowns defined at grid points. For an M × N grid (see figure 4),
there are 3MN + M unknowns. When using an approximately uniform distribution
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Figure 4. Boundary-fitted curvilinear coordinates (ξ, ζ ) created using an elliptic grid
generator with M = 50 and N = 10.

of grid points along the film, a grid with M = 200 and N = 50 is found to give
sufficient numerical resolution. Floating-point precision plays a very crucial role in
the calculations due to the disparate scales in the basic state. In order to control
round-off error, we find it necessary to use 128-bit (quadruple) precision floating-
point arithmetic. Interestingly, in a closely related problem involving the dewetting of
a fluid film of finite extent, Diez & Kondic (2007) also report that quadruple precision
was required to avoid spurious effects from round-off error.

We use an implicitly restarted Arnoldi method with spectral shift to solve the
generalized eigenvalue problem. A software implementation of this method is provided
by ARPACK (see Lehoucq, Sorensen & Yang 1998), which is available at the Netlib
Repository (www.netlib.org). This method is capable of computing the extremal
eigenvalues and eigenfunctions of large sparse unsymmetric matrices, which makes
it well suited for the present stability calculations. We use the sequential version of
the Multifrontal Massively Parallel Sparse direct Solver (MUMPS) software library
(Amestoy et al. 2000) for sparse storage and matrix factorizations. With these sparse
methods, it is feasible to accurately compute the neutral stability conditions across a
wide range of parameter values, as demonstrated later in § 5.

4. Benchmarks for film rupture
Before presenting the results of the linear stability calculations discussed in the

previous section, it is instructive to establish benchmarks for film stability by
considering idealized basic states. Consider the film shown in figure 5, which is a
uniform film of finite length that is thinning due to a drainage flow. Using the non-
dimensionalization from § 2.1, solutions for the film thickness h̄ and the x-component
of velocity ū are given by

dh̄

dt
= −Q(t), ū(x, t) =

Q(t)x

h̄(t)
, (4.1)

where h̄(0) = h0 and Q(t) is the flow rate of the fluid out of each end of the film. These
solutions capture some key features of the full basic state derived in § 2.2 without
considering Plateau borders. The two cases Q =0 and Q > 0 provide important
benchmarks for film rupture. The former case was treated in earlier analyses that
considered a spatially extended film of constant thickness (Vrij 1966; Ruckenstein
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Figure 5. A uniform squeeze film which is draining at a rate Q.

& Jain 1974). These will be adapted here for a film with finite length. In the latter
case with flow, a similar analysis was performed by Gumerman & Homsy (1975)
for a thinning film with tangentially immobile interfaces; here, we present results for
completely mobile interfaces.

Since the films under consideration are thin (h̄ � 1) and we are interested in long-
wave instabilities, the linear stability analysis is performed using an asymptotically
simplified form of the governing equations and boundary conditions (2.1)–(2.6)
(Erneux & Davis 1993). We introduce the following rescaled variables

X = x, Z = z/h0, T = t, H = h/h0, U = u, W = w/h0, Q̄ = Q/h0,

and parameters

Ā = A/h3
0, C̄ = C/h0,

where all rescaled quantities are assumed to be O(1) as the initial aspect ratio h0 → 0.
This leads to the following long-wave equations for H = H (X, T ) and U = U (X, T ):

HT + (UH )X = 0, (4.2)

4(HUX)X + C̄−1HHXXX − ĀHΦX = 0, (4.3)

where Φ = 1/(2H )3 is the rescaled van der Waals potential.
The basic state given by (4.1) is similarly rescaled: H̄ = h̄/h0 and Ū = ū. It is readily

shown that H̄ and Ū are exact solutions to (4.2) and (4.3) with an appropriate choice
of boundary conditions at the edges of the film. The linear stability analysis proceeds
by introducing infinitesimal perturbations Ĥ = H − H̄ and Û = U − Ū and linearizing
(4.2) and (4.3) to give

ĤT + ŪĤX + ŪXĤ + H̄ ÛX = 0, (4.4)

and

H̄ ÛXX + ŪXĤX + 1
4
C̄−1H̄ ĤXXX − 1

4
ĀH̄Φ ′(H̄ )ĤX = 0. (4.5)

Realizing that H̄X = ŪXX = 0, the above equations are combined into a single equation
by differentiating (4.4) with x and substituting for H̄ ÛXX from (4.5). The result is a
linear advection–diffusion equation for Y ≡ ĤX:

YT + ŪYX = DYXX +
(
V − ŪX

)
Y, (4.6)

with coefficients

D =
H̄

4C̄
and V =

3Ā

32H̄ 3
(4.7)

accounting for the stabilizing effect of surface tension and the destabilizing effect of
van der Waals attractions, respectively. It is also apparent from the term ŪXY on
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the right-hand side that the drainage flow is stabilizing. The latter effect is illustrated
below, where (4.6) is solved for the two cases: Q =0 and Q > 0.

4.1. Uniform film with constant thickness (Q =0)

Here we examine the stability of the basic state Ū = 0 and H̄ = 1. In this case, all
of the coefficients in (4.6) are constant, permitting solutions of the form Y = η(x)eσ t ,
where the growth rate σ and function η(x) are determined by solving the eigenvalue
problem

Dη′′ + V η = ση.

We allow the perturbations to the film thickness to be free at the edges of the
film: η(±1) = 0, recalling that Y = ĤX . The eigenvalue problem yields two linearly
independent solutions:

η(1)
n = cos(αnx), σ (1)

n = −α2
nD + V,

η(2)
n = sin(βnx), σ (2)

n = −β2
nD + V,

where αn = (n − 1/2)π and βn = nπ for n ∈ �.
The eigenvalues are real with the maximal eigenvalue given by σmax = σ

(1)
1 so that

the condition for marginal stability is σ
(1)
1 = 0. Using the definitions for the coefficients

D and V in (4.7), neutral stability is given by

C̄Ā = 2
3
π2H̄ 4.

When expressed in terms of the film aspect ratio h̄ = h0H̄ and Sheludko number
S = AC =h4

0C̄Ā, the neutral stability condition has form

S = 2
3
π2h̄4. (4.8)

Given h̄ and S, rupture is predicted to occur if S > 2π2h̄4/3.
Vrij (1966) and Ruckenstein & Jain (1974) analysed the stability of a film with

infinite horizontal extent, concluding that it is unstable to long waves having
wavelengths that exceed a critical value λc =4πh̄2

√
2/3S, which expresses (1.1) in

the present notation. A critical thickness can be estimated from this condition by
equating the critical wavelength to the film length, viz. λc = 2. Note that this estimate
leads to a condition similar to (4.8), where S ∼ h̄4 still holds; however, the coefficient
2/3 is replaced with 8/3. The coefficients differ because the boundary conditions
imposed at the edges of the film are not the same in these two cases and were chosen
arbitrarily.

4.2. Uniformly thinning film (Q > 0)

Since the film is thinning for Q > 0, this leads to a basic state which is time-dependent.
For drainage induced by Plateau border suction, the flow rate Q is given by (2.7),
which is written in the rescaled variables as

Q̄ =
3

8

√
2H̄ 3

α
, (4.9)

where α = a/a0 is taken as a parameter which adjusts the strength of flow. We assume
that thinning occurs slowly when compared to the growth of the disturbances leading
to rupture. As described in § 3, this assumption facilitates a frozen-time approximation,
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exponentially to zero as β → ∞.

so that H̄ = H̄ (t∗) and Ū = Ū (X, t∗) at the frozen time t∗. The solutions to (4.6) then
take the form

Y = η(X, t∗)eσ (t∗)T ,

reducing the equation to an eigenvalue problem for the growth rate σ (t∗) and spatial
mode η(X, t∗):

Dη′′ − U ∗Xη′ + (V − U ∗)η = ση, (4.10)

where U ∗ =(3/8)
√

2H̄ /α is the flow strength. Again, we assume that the ends of the
film are free so that η(±1, t∗) = 0. (Below, the dependence on t∗ is dropped to simplify
notation.)

Under the change of variables η(X) = W (ξ ), with ξ = U ∗X2/2D, (4.10) is transformed
to Kummer’s equation (for example, see Lebedev 1972)

ξW ′′ +
(

1
2

− ξ
)
W ′ − λW = 0,

where λ=(σ − V + U ∗)/2U ∗. There exist two linearly independent solutions

η(1)(X; λ) = M
(
λ, 1

2
; βX2

)
and η(2)(X; λ) = XM

(
1
2

+ λ, 3
2
; βX2

)
, (4.11)

where M(a, b; ξ ) denotes a confluent hypergeometric function and β = U ∗/2D. Since
(4.10) along with the boundary conditions can be expressed in the form of a
self-adjoint eigenvalue problem, if follows that λ, and hence σ , are real numbers.
The eigenvalues λ are obtained by ensuring that solutions are compatible with the
boundary conditions. For non-trivial solutions, the compatibility conditions

M
(
λ(1), 1

2
; β

)
= 0 and M

(
1
2

+ λ(2), 3
2
; β

)
= 0

produce two sets of eigenvalues λ(1) and λ(2). These are plotted in figure 6(a) for a
range of β .

It follows from figure 6 that the maximal growth rate corresponds to the eigenvalue
λ

(1)
1 through

σmax =
(
2λ(1)

1 − 1
)
U ∗ + V. (4.12)

According to the definition β =(3C̄/4)
√

2/αH̄ , the values β 
 1 are most relevant

here, because rupture occurs as H̄ → 0. We show in figure 6(b) that λ
(1)
1 ∼ e−β in
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this limit, and for our purposes we take λ
(1)
1 = 0. Using this result with (4.12), neutral

stability is defined by σmax = 0, yielding

Ā = 4
√

2/α H̄ 7/2.

It is convenient to rewrite this in terms of the Sheludko number S = AC and film
aspect ratio h̄ =h0H̄ for comparison with later results. Using the velocity scale for
capillary drainage U0 = (σ/µ)

√
h0/a0 introduced in § 2.2, the neutral stability condition

is rewritten as

S = 4
√

2/a h̄7/2. (4.13)

Alternatively, if we define neutral stability using the effective growth rate given by
(3.5), taking σmax = Q̄/H̄ , then we obtain

S = 8
√

2/a h̄7/2. (4.14)

When the thinning rate is taken into account, the onset of rupture is slightly delayed.
Note that drainage is assumed to occur from Plateau border suction, which produces

a higher flow rate as the Plateau border radius a is decreased. The dependence on
a in (4.13) and (4.14) indicates that the film is stabilized by an increased flow rate.
Moreover, by comparing the neutral stability conditions for the two cases Q =0 and
Q > 0, the dependence on the film aspect ratio h̄ is different. We find that S ∼ h̄4 when
Q =0 and S ∼ h̄7/2 when Q > 0. This confirms that flow has a stabilizing effect in film
rupture. Similar conclusions are drawn by Gumerman & Homsy (1975) and Sharma
& Ruckenstein (1987), who also treated drainage flows in their stability analyses of
films with tangentially immobile interfaces. In the next section it is shown that further
modification of the marginal stability of thinning liquid films arises when Plateau
borders are included explicitly.

5. Instability results
The key results from the numerical solution of (3.3) are now summarized. The

primary goal is to quantify the critical conditions for rupture and compare them
against the neutral stability results that were obtained in the previous section. First,
we begin by describing several qualitative features of the solutions to the eigenvalue
problem. It was pointed out in § 3 that if an initially stable basic state is set in
motion by incrementally decreasing the lamellar thickness hL, then film rupture can
be examined by computing the growth rates and eigenfunctions (modes) from (3.3) at
each instant. Stability is monitored through the growth rate with maximal real part,
labelled σmax , and corresponding eigenfunctions. A typical set of results from this
calculation is illustrated in figure 7, where Re(σmax ) (a) and Im(σmax ) (b) are plotted
versus the lamellar thickness for a range of Sheludko numbers S and prescribed
Plateau border radius a =1. This figure is discussed further below.

5.1. Qualitative features

In general, one of the potential difficulties of analysing the linear stability of an
approximate basic state originates from the truncation errors ψ̄ − ψc which are
represented in the linear stability equations. Due to this fact, it is important to
distinguish between the principle modes of instability and spurious modes that arise
from these truncation errors in order to interpret the results. This is possible here
since the magnitude of the errors in the basic state vanishes as hL → 0, whereas
the van der Waals attractions which generate the instability are enhanced in this



Spontaneous rupture of thinning films with Plateau borders 77

S = 0

Re(σmax)

Re(σE, max)

10–810–910–1010–11S = 10–12

–0.2

 0

 0.2

 0.4

 0.6

 0.8

1.0

 1.2(a)

(b)

10–5 10–4 10–3 10–2

10–5 10–4 10–3 10–2

hL

Im(σmax)10–810–9

10–10

10–11

S = 10–12

S = 0

–0.2

 0

 0.2

 0.4

 0.6

 0.8

1.0

 1.2

 1.4

Figure 7. (a) Real and (b) imaginary parts of the maximal growth rate, plotted versus lamellar
thickness for physically relevant values of S. As the lamella thins (hL decreases), growth rates
are initially real, with small magnitude; this is spurious growth due to thinning and truncation
errors in the basic state. Below a critical hL, the growth rate has a rapidly increasing real part
and a non-zero imaginary part, appearing as a jump; this growth is the result of van der Waals
instability. The maximal effective growth rate σE,max (dashed) defined by (3.5) shows a slight
delay in the onset of instability.

limit; the two effects become decoupled. To illustrate, compare the case S = 0, where
van der Waals attractions are excluded, to the cases with S > 0 in figure 7(a). When
S = 0, truncation errors lead to disturbances with a small, but positive growth rate
which diminishes as hL → 0. These growth modes are called spurious and they do
not lead to rupture. The very same trend is observed for S > 0 as the film thickness
is initially decreased; however, when hL decreases below a critical value, Re(σmax )
increases rapidly, signalling the van der Waals instability. Rupture modes may be
excited before these critical points; however, when accounting for thinning using
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Figure 8. A degenerate pair of unstable modes is produced at the onset of rupture (plus
complex conjugates). These modes are (a) symmetric and (b) antisymmetric with respect to
x = 0. Here, S = 10−9 and a = 1.

(3.5), their effective growth rate is shown to have negative real part (see dashed lines
in figure 7a).

Another indicator of the onset of van der Waals instability is that the maximal
growth rate passes into the right-half of the complex plane with a non-zero imaginary
part. Note that Im(σmax ) in figure 7(b) undergoes a jump as hL is decreased below
the critical value, because the initially dominant spurious modes have Im(σmax ) = 0.
For all of the parameters that we have examined, σmax is a degenerate eigenvalue
near rupture onset, paired with two modes ψ̂ (1) and ψ̂ (2) plus complex conjugates.
For example, the real and imaginary parts belonging to ĥ(1) and ĥ(2), which are the
corresponding perturbations to the gas–liquid interface, are plotted in figure 8 for
S = 10−9 and a = 1. The mode ĥ(1) is symmetric and the mode ĥ(2) is antisymmetric
with respect to x = 0; linear stability analysis does not distinguish between these two
modes of rupture. Also note that the amplitudes of these perturbations are largest
near x = ± 1, indicating that the edges of the thin film may be most susceptible to
rupture even though these regions are not the thinnest. When Plateau borders are
not considered, it is difficult to draw conclusions about the specific features of the
modes for rupture, since these modes must conform to boundary conditions that are
otherwise artificially imposed at the edges of the film. This is true of earlier analyses
of film rupture, including the benchmark cases considered in § 4. In effect, the addition
of Plateau borders provides a physically correct method for imposing these boundary
conditions.

The complex growth rates induced by the van der Waals instability are an indication
of travelling waves. Given the growth rate σ = σr + iσi and corresponding mode
Ψ = Ψr + iΨi , a real solution ψ is formed by

ψ = Ψ eσ t + Ψ ∗eσ ∗t = 2eσr t [Ψr cos(σit) − Ψi sin(σit)] , (5.1)

with the asterisk indicating a complex conjugate. In general, the terms in square
brackets produce either standing or travelling waves. Taking σ = σmax and using each
of ĥ(1) and ĥ(2) in place of Ψ , symmetric and antisymmetric waves are plotted for
a sequence of times in figure 9, illustrating that it is possible to construct travelling
waves. Disturbances to the gas–liquid interface propagate from the centre of the
lamella outwards towards its edges, which suggests that they are advected by the flow.
To the best of our knowledge, there are no previous stability analyses which predict
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Figure 9. The waves given in (5.1) are plotted for the perturbations to the gas–liquid interface
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Figure 10. (a) The imaginary part of σmax is plotted versus lamella thickness for several
values of flow strength k defined in (5.2). (b) The proportionality between Im(σmax ) and k.
Here, S = 10−9 and a = 1.

travelling waves. Indeed, without Plateau borders, the stability analysis of a thinning
film in § 4.2 does not predict travelling waves.

We can test whether the drainage flow is responsible for producing the travelling
waves. For this to be the case, the imaginary part of the growth rate must be
proportional to the strength of the flow in the basic state. We have checked for this
dependence by introducing an artificial parameter k that modifies the flow in the
basic state, viz.

ū = kuc and w̄ = kwc, (5.2)

where uc and wc are the composite solutions given by (2.11) and (2.12); k =1
corresponds to the physical flow. The same calculations were performed with (3.3),
choosing k ∈ [0, 1], and the resulting plots of Im(σmax ) in figure 10 confirm the
proportionality with k. In particular, Im(σmax ) ≡ 0 when k = 0 for all hL examined.
Of course, the cases with k �= 1 are not physical, but they do confirm that travelling
waves can be directly attributed to the underlying drainage flow and indeed are
completely suppressed in the absence of flow (k = 0).
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without drainage flow (k = 0). The symmetric (—) and antisymmetric (- -) modes are degenerate
and the centre of the film appears to be most susceptible to rupture.

The results for the case with k = 0 provide an opportunity to study the conditions
for rupture without the effects of flow in order to make some comparisons. The
maximal growth rate, which is now purely real, is plotted against hL in figure 11 for
a range of S and with a = 1, as was done for the full basic state (k = 1) in figure 7.
By comparing the real part of the effective growth rate in these two figures, locating
the points where Re(σE,max ) = 0, it can be seen that rupture is delayed when there is
a drainage flow present. Flow was also shown to enhance film stability in § 4.2 and
this has been further established in the literature for related problems (Gumerman
& Homsy 1975; Sharma & Ruckenstein 1987; Coons et al. 2003). The modes of
rupture for the case with k =0 are shown in figure 12. It is interesting to compare
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Figure 13. Neutral stability curves showing the power-law dependence of the critical thickness
on S (log–log axes) for the finite length film with constant thickness given by (4.8) (short dashes),
the uniformly thinning film of finite length given by (4.14) (long dashes) and the full basic
state given by (5.4) (the points were obtained numerically and follow S ∼ h3

L, plotted as a solid
line). The film is predicted to be unstable when hL lies to the left of a given neutral stability
curve.

these modes with those shown in figure 8 for k = 1. Once again, the van der Waals
instability produces a pair of modes which are symmetric and antisymmetric with
respect to x =0. In the case where k = 0, however, the most susceptible region for
rupture appears to be at the centre of the lamella rather than at the edges. It is clear
by now that flow leads to several distinct qualitative features in the rupture process.

5.2. Neutral stability: critical conditions for rupture

We identify the conditions for neutral stability using the real part of the effective
growth rate defined by (3.5), viz.

Re(σE,max ) = 0 =⇒ Re(σmax ) = Q/hL. (5.3)

By fixing the Plateau border radius a, the marginally stable film thickness was
calculated for several values of S and these points are plotted in figure 13. Alongside
these results, we plot the neutral stability curves for both the benchmark problems
given by (4.8) and (4.14). Note that a film is predicted to rupture spontaneously when
the (instantaneous) thickness lies to the left of a given curve. From the numerical
calculations using the full basic state, we find that there is a power-law dependence
between S and hL at neutral stability:

S = f (a)h3
L, (5.4)

where the dependence on a is discussed separately below. The benchmarks lead to
different power-law dependences between S and hL, where S ∼ h

7/2
L in (4.13) for the

case with thinning and S ∼ h4
L in (4.8) for the case without thinning. The full basic
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Figure 14. The neutral stability curves show the dependence on a given by (5.4) for the full
basic state (solid line) and by (4.14) for the thinning film without Plateau (dashed line). For
the full basic state, S = 10−8, 10−9 and 10−10 are all plotted and collapse onto the same curve.

state is found to be more stable than either of the benchmark cases and the degree
of stabilization increases as the Sheludko number decreases.

The dependence on a in (4.14) and (5.4) is shown in figure 14. In the case of (5.4),
neutral stability was calculated for several values of S and all the results collapse onto
the single curve f (a) = S/h3

L. Recall from (2.7) that the flow rate produced by Plateau
border suction is directly proportional to a−1/2 and the same dependence occurs in
the neutral stability condition given by (4.14) for the thinning film with uniform
thickness (no Plateau borders), thus demonstrating the direct stabilizing effect of flow
for this idealized basic state. In the case of the full basic state, the parameter a not
only controls the rates of thinning and drainage, but also specifies the curvature of
the Plateau borders, and hence the shape of the lamella at its edges. The dependence
on a in (5.4) is more complicated and, in particular, it is possible that the critical
lamellar thickness approaches a minimum value for smaller values of a, though this
has not been investigated. In the next section, we discuss some possible mechanisms
to explain the stabilization shown in figures 13 and 14.

6. Discussion
Using approximate parameter values for water, aniline and molten aluminium, the

predictions for the critical thickness are compared in table 1 for the full basic state
(labelled hcrit

L ) and both benchmark cases (h1 and h2). The values are reported for films
of lengths (a) 0.1 cm and (b) 0.01 cm, for values of S which range over approximately
three orders of magnitude, and for a = 1. Note that in all cases, the shorter film is
more stable as expected. The predictions for hcrit

L show quantitatively the degree of
stabilization over the benchmark predictions. For example, consider an aluminium
foam with a lamella of length 0.1 cm. We have that hcrit

L = 26 nm and that h1 = 280 nm
for a film with the same length but of constant thickness – a difference of one order of
magnitude. Even when flow and thinning are added to the basic state, the prediction
h2 = 90 nm is larger than hcrit

L by over a factor of 3.
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Substance S (×1012) h1 (nm) h2 (nm) hcrit
L (nm)

Water
(a) 0.07 330 110 32
(b) 7.4 100 40 15

Aluminium
(a) 0.04 280 90 26
(b) 4.0 88 34 12

Aniline
(a) 0.86 600 220 72
(b) 86 190 81 34

Table 1. A comparison of the critical thicknesses (in nanometres) for films with lengths
(a) L0 = 0.1 cm and (b) L0 = 0.01 cm, choosing a = 1 for the (dimensionless) Plateau border
radius. Here, h1 is calculated from (4.8), h2 from (4.14) and hcrit

L are values calculated from
(5.4) for the full basic state.

To our knowledge, there are currently no experimental measurements of critical
thicknesses for pure liquid films reported in the literature. Banhart et al. (2001)
used X-ray techniques to observe single-rupture events in foams made of molten
aluminium; however, in order to limit drainage, solid particles were suspended in the
liquid phase. Perhaps coincidentally, they report critical film thicknesses which are
comparable to the particle size (ca. 50 µm). There are several experimental studies of
the critical thickness for foam films containing surfactants and emulsion films (for a
recent review, see Manev & Nguyen 2005). Even though the surfaces of these films
are not completely mobile and other effects like surface elasticity may be involved,
these experiments provide us with a point of reference. For instance, Vrij (1966)
compiled measurements taken by Sheludko and coworkers for surfactant-stabilized
aniline and aqueous films (L0 = 0.01 cm) reporting critical thicknesses of 42 and 27
nm, respectively. These values are close to the corresponding values of hcrit

L listed in
table 1, though the value of a in these experiments is uncertain. There are, however,
some important differences when tangential stresses are present at the interfaces of
the film. We discuss these and possible generalizations to our stability analysis in
more detail below.

In light of the predictions in table 1, we return to an assumption made earlier to
derive the basic state in § 2.2, where it was assumed that capillary suction is the only
effect driving thinning; however, based on the small values for hcrit

L , especially for
shorter films (L0 � 0.1 cm), this is not likely to be the case. As a lamella approaches
its critical thickness, the rate of thinning will be enhanced to some degree by the
van der Waals attractions. We do not provide an estimate for this additional effect,
but simply comment that, given an increased flow rate for drainage as well as the
definition for the effective growth rate in (3.5), which is based on the rate of thinning,
we would expect the film to be further stabilized if such effects were included. By
these arguments, the values for hcrit

L reported in table 1 are considered upper bounds.
Comparisons between the van der Waals instability for a lamella with Plateau

borders and the simpler benchmark cases indicate that thinning, drainage flow and
curved boundaries lead to a more stable film. In the case of thinning, stabilization is
inferred from the definition of the effective growth rate (3.5). This definition states
that in the immediate vicinity of marginal stability, unstable disturbances require a
short but finite time to grow and meanwhile the film continues to thin; it is only when
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the growth of the disturbances outpace thinning that the onset of rupture is detected.
With respect to the drainage flow, stabilization could be manifested in a couple of
ways. Firstly, as disturbances are advected by the flow to the edges of the thin film
near the Plateau borders, they are moved to a thicker and presumably more stable
region of the film. Interestingly, the lamellar edges appear to be the most susceptible
to rupture. Secondly, as disturbance waves are pushed towards the Plateau borders
they become compressed and consequently stabilized by surface tension (see figures 8
and 9). This ‘wave shortening’ mechanism is one possible interpretation of an earlier
finding by Sharma & Ruckenstein (1987), who reported that long waves are more
strongly stabilized when a drainage flow is present.

Due to our interest in metallic foams, for which no surfactants are available, we
have analysed the rupture of free films composed of pure liquids. We have therefore
presented a stability analysis for the limiting case in which the gas–liquid interfaces
are stress-free. As we mentioned above, surface tractions are often present in dispersed
systems, including foams which contain surfactant and emulsions. Curved boundaries,
drainage flows and thinning are, however, ubiquitous features of the thin films formed
in these systems. Based on the findings of this paper, the importance of these features
on film rupture motivates the systematic incorporation of Plateau borders into other
theoretical treatments of film stability in dispersed systems. We conclude this paper
with a brief discussion of how an approach similar to the one used here could be
generalized to study these systems.

It has been established that when a fluid drains from a tangentially immobile
film into the adjoining Plateau borders, the film profile is non-monotonic due to
localized constrictions in the film near the Plateau borders (Frankel & Mysels 1962;
Jones & Wilson 1978; Joye, Miller & Hirasaki 1992; Aradian, Raphael & de Gennes
2001; Howell & Stone 2005). This feature has been referred to as ‘marginal pinching’
by some authors (e.g. Aradian et al. 2001) and ‘hydrodynamic non-homogeneity’ by
others (e.g. Coons et al. 2003), and it marks an important difference from the case with
stress-free interfaces, where only monotonic film profiles are possible (see figure 3 as
well as Howell & Stone 2005). (These ‘hydrodynamic’ constrictions are of a different
origin than those predicted here, where constrictions at the film edges arise from van
der Waals instability which is ‘non-hydrodynamic’ in origin.) An approximate basic
state which includes marginal pinching can be derived using a matched asymptotic
analysis similar to that described in § 2.2 and in Brush & Davis (2005). Aradian
et al. (2001) provide the framework for such an analysis through a decomposition
of the domain into a flat film region, a pinched region and a capillary-static Plateau
border region; however, they have obtained solutions only for a semi-infinite film
region. Interestingly, Breward & Howell (2002) performed the same analysis for a
film of finite length containing soluble surfactant and found that both monotonic and
non-monotonic profiles are possible, but were not able to identify a clear transition
between the two types of solutions. The construction of a basic state for the limiting
case with tangentially immobile interfaces appears to be more straightforward than for
their model. Given this basic state, a full linear stability analysis could be performed
via the algorithm described in § 3.

The authors would like to thank Dr M. Gratton for many useful discussions
and Professor A. Bayliss for his crucial advice on the numerical calculations. This
material is based upon work supported by the National Science Foundation under
Grant nos DMS-0636574 (A.M.A.), CMMI-0827101 (L.N.B.) and CMMI-0826703
(S.H.D.).
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Appendix. Linear stability equations in boundary-fitted curvilinear coordinates
Consider a general curvilinear coordinate system ξ = ξ (x, z, t) and ζ = ζ (x, z, t)

which maps the linearized physical domain into the fixed rectangular domain 1 �
ξ � M , 1 � ζ � N . For an infinitesimal perturbation ĥ =h − h̄ to the gas–liquid
interface,

z = h̄(x, t) + ĥ(x, t) �→ ζ = N + f̂ (ξ, t),

where |f̂ | � N . The resulting perturbations to the field variables are written as

p = p̄ + p̂ and v = v̄ + v̂,

where v̄ = ūa1 + w̄a2 and v̂ = ûa1 + ŵa2 are the contravariant components of the basic
state and perturbed velocity fields with the base vectors a1 = (xξ , zξ ) and a2 = (xζ , zζ )
tangential to the coordinate lines. From these base vectors we obtain the metric tensor
and Jacobian for this coordinate transformation:

gij = ai · aj and J =
√

det(gij ),

respectively. Here, the base vectors are positively oriented so that det(gij ) > 0 at all
points of interest.

With these definitions, linearize the field equations and boundary conditions (2.1)–
(2.6) expressed in the coordinate system defined above. First, the perturbations to the
flow field satisfy the following continuity equation:

∂

∂ξ
(J û) +

∂

∂ζ
(J ŵ) = 0. (A 1)

For the momentum balance given by (2.1), it is convenient to introduce the reduced
pressure � = p + φ(h). As shown below, the contributions from van der Waals
attractions φ are expressed in the jump in normal stress at the gas–liquid interface.
We consider the contravariant components of perturbations to momentum, which
yields the ξ -component of momentum

g22

∂�̂

∂ξ
− g12

∂�̂

∂ζ
= J

∂

∂ξ

[
J −1

(
g22v̂

1
;1 − g12v̂

1
;2

)]
− J

∂

∂ζ

[
J −1

(
g12v̂

1
;1 − g11v̂

1
;2

)]
+

(
g22Γ

1
11 − g12Γ

1
12

)
v̂1

;1 +
(
g11Γ

1
12 − g12Γ

1
11

)
v̂1

;2

+
(
g22Γ

1
12 − g12Γ

1
22

)
v̂2

:1 +
(
g11Γ

1
22 − g12Γ

1
12

)
v̂2

;2, (A 2)

and the ζ -component of momentum

g11

∂�̂
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− g12

∂�̂
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= J
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)
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2
12
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;2, (A 3)

where

�̂ = p̂ +
φ′(h̄)h̄

N − 1
f̂ (A 4)

are the perturbations to the reduced pressure. Here, the terms v̂i
;j are the components

of the gradient (covariant derivative) ∇v̂ of the velocity perturbations. In general, for
a two-dimensional contravariant vector field v = v1a1 + v2a2, covariant differentiation
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leads to a rank-two tensor with components

v1
;1 =

∂v1

∂ξ
+ Γ 1

11v
1 + Γ 1

12v
2, v1

;2 =
∂v1

∂ζ
+ Γ 1

12v
1 + Γ 1

22v
2,

v2
;1 =

∂v2

∂ξ
+ Γ 2

11v
1 + Γ 2

12v
2, v2

;2 =
∂v2

∂ζ
+ Γ 2

12v
1 + Γ 2

22v
2,

where Γ k
ij denote Christoffel symbols of the second kind (for example, see Aris 1989).

The interfacial boundary conditions are enforced at ζ =N + f̂ (ξ, t) in the mapped
domain and linearization is performed through a Taylor expansion about ζ = N . In
this way, the following linearized normal and tangential stress conditions at ζ = N

are obtained:

�̂ − φ′(h̄)h̄

N − 1
f̂ − τ̂nn − C−1K̂ +

∂

∂ζ
(p̄ − τ̄nn − C−1K̄)f̂ = 0, (A 5)

τ̂nt +
∂

∂ζ
(τ̄nt )f̂ = 0, (A 6)

where the definition for the reduced pressure given by (A 4) is used in the normal

stress balance. Here, K̄ and K̂ are terms for interfacial curvature, given by

K̄ = J −1

{
∂

∂ζ
(g11)

1/2 − ∂

∂ξ

[
g12(g11)

−1/2
]}

, K̂ = J −1 ∂

∂ξ

[
J 2(g11)

−3/2f̂ ξ

]
,

and τ̄nn, τ̂nn, τ̄nt and τ̂nt are terms for viscous normal stresses (nn) and viscous shear
stresses (nt), given by

τ̄nn = − 2g12(g11)
−1v̄2

;1 + 2v̄2
;2,

τ̂nn = − 2g12(g11)
−1v̂2
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Finally, the linearized kinematic condition is given by

f̂ t = ŵ − (ū − U ) f̂ ξ +
∂

∂ζ
(w̄ − W ) f̂ , at ζ = N, (A 7)

where V = Ua1 + W a2 accounts for the motion of the reference frame with
components

U = (ẋ i + żk) · a1 and W = (ẋ i + żk) · a2,

where ẋ ≡ ∂x/∂t and ż ≡ ∂z/∂t for fixed ξ and ζ and ai are the contravariant
base vectors (i.e. ai · aj = δi

j ). These terms for the motion of the reference frame arise
because the evolving physical domain is mapped to a fixed rectangular domain.

Symmetry conditions are imposed at the remaining boundaries (i.e. ξ = 1, M and
ζ = 1). These conditions are expressed as

v̂ · n = 0, ∇ (v̂ · t) · n = 0 and ∇p̂ · n = 0, (A 8)
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where n and t are the unit normal and unit tangent vectors to the boundary. For
example, at the film centreline ζ = 1, this yields

ŵ = 0,

g12

∂

∂ξ
(g11û) = g11

∂

∂ζ
(g11û + g12ŵ),

g22

∂p̂

∂ξ
= g12

∂p̂

∂ζ
.

Similar conditions are derived from (A 8) at the other boundaries.
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